New bounds for multiple packings of Euclidean sphere

نویسنده

  • Vladimir Blinovsky
چکیده

Using lower bounds on distance spectrum components of a code on the Euclidean sphere, we improve the known asymptotical upper bounds on the cardinality of multiple packings of the sphere by balls of smaller radii. Let Rn be the n-dimensional Euclidean space, and Sn−1(r) ⊂ Rn be the (closed) Euclidean sphere of radius r with the center in the origin. Let further S̃n−1(r, ā) be the open ball of radius r centered in ā ∈ Rn. Multiple L-packing K(L, t) by balls of radius t is a finite set (≡code) K ⊂ Sn−1(1), such that for any subset {x̄1, . . . , x̄L+1} ⊂ K of L + 1 points (≡codewords) we have

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper Bounds for Packings of Spheres of Several Radii

We give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for pa...

متن کامل

New Conjectural Lower Bounds on the Optimal Density of Sphere Packings

Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a 100-year-old lower bound on the maximal packing density due to Minkowski in d-dimensional Euclidean space R. The asymptotic behavior of this bound is controlled by 2 in high dimensions. Using an ...

متن کامل

Sphere Packings and Error-correcting Codes

Error-correcting codes are used in several constructions for packings of equal spheres in ^-dimensional Euclidean spaces E. These include a systematic derivation of many of the best sphere packings known, and construction of new packings in dimensions 9-15, 36, 40, 48, 60, and 2 for m g 6. Most of the new packings are nonlattice packings. These new packings increase the previously greatest know...

متن کامل

New Provisional Lower Bounds on the Optimal Density of Sphere Packings

Sphere packings in high dimensions interest mathematicians and physicists and have direct applications in communications theory. Remarkably, no one has been able to provide exponential improvement on a 100-year-old lower bound on the maximal packing density due to Minkowski in d-dimensional Euclidean space Rd. The asymptotic behavior of this bound is controlled by 2 in high dimensions. Using an...

متن کامل

New Upper Bounds on Sphere Packings I

We develop an analogue for sphere packing of the linear programming bounds for error-correcting codes, and use it to prove upper bounds for the density of sphere packings, which are the best bounds known at least for dimensions 4 through 36. We conjecture that our approach can be used to solve the sphere packing problem in dimensions 8 and 24.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006